PRODUIT ISOLANT L-1260

CLASSIFICATION	Paper cerámique isolant flexible.
S/EN 1094-1	Base fibres céramiques silico-aluminouses. Application par collé.
	Classe 1250

RÉFÉRENCE	0615	0615	PY	GROUPE	FAMILLE	ESTANDAR
		0010		FC	15	

ANALYSE CHIMIQUE MOYENNE (Obs "A")

AL2O3	47,0	%
SiO2	52,0	%
Perte Calcination	8,0	%

PROPRIÉTÉS

Température de classification	1260	°C	EN 1094-1
Contraction linéaire permanente		%	EN 1094-6 À 1260 ºC
Densité apparente (kg/m3)			
Conductivité thermique (w/mk)			
200ºC	0,06		
400°C	0,09		
600ºC	0,13		
800ºC	0,2		

FORMATS ET EMBALLAGES Dimensions selon epaisseurs.

Épaisseurs disponibles du 1, 2, 3, 4, 5, 6 mm.

Pour autres dimensions consulter à notre département technique.

"A" Méthode alternative = Espectrometría par FRX

Normes indiquées applicables. Autres normes s/acuerdo préalable. Les caractéristiques techniques représentent les valeurs moyennes obtenues selon des méthodes d'essais reconnus sur les matériaux normalisés, elles sont soumises aux variations normales de fabrication et ne doivent pas être prises comme spécifications.

<u>ÉQUIVALENCES</u>

1N/mm2 = 1MPa = 10,2 kg/cm2 1kg/cm2 = 0,098 Mpa = 0,098 N/mm2 1W/m.K = 0,86 kcal/m h.K 1Kcal/m.K = 1,16 W/m.K